Forecasting Demand for Cloud Computing Resources - An Agent-based Simulation of a Two Tiered Approach
نویسندگان
چکیده
As cloud computing grows in popularity and usage, providers of cloud services are facing challenges of scale and complexity; how can they ensure they are most efficiently using their existing infrastructure, and when should they invest in new infrastructure to meet demand? We propose a two-period model which utilises a third party called the Coordinator, who interacts with a population of resource-buyers. The Coordinator uses two mechanisms to aid the provider in future capacity planning. Firstly, the Coordinator extracts probabilities from the buyers through an options market to determine their likely usage in the next period, which can subsequently be used to schedule workloads. Secondly, the Coordinator uses previous market demand to predict if cost can be reduced by investing in a reservation over a longer period. This upfront investment contributes to the provider‟s capital expenditure in new capability and implies that Coordinator intends to further utilise such an investment. We implement the model in an agent-based simulation using actual UK market data where a pool of users submit different probabilities based on previous market demand. We show that the Coordinator can make a profit when faced with different market conditions, and that profit can be maximised by considering the utilisation of previously purchased
منابع مشابه
An Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملEnergy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملReduction of Energy Consumption in Mobile Cloud Computing by Classification of Demands and Executing in Different Data Centers
In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...
متن کاملA Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012